Effect of water temperature on dermal exposure to chloroform.

نویسندگان

  • S M Gordon
  • L A Wallace
  • P J Callahan
  • D V Kenny
  • M C Brinkman
چکیده

We have developed and applied a new measurement methodology to investigate dermal absorption of chloroform while bathing. Ten subjects bathed in chlorinated water while breathing pure air through a face mask. Their exhaled breath was delivered to a glow discharge source/ion trap mass spectrometer for continuous real-time measurement of chloroform in the breath. This new method provides abundant data compared to previous discrete time-integrated breath sampling methods. The method is particularly well suited to studying dermal exposure because the full face mask eliminates exposure to contaminated air. Seven of the 10 subjects bathed in water at two or three different temperatures between 30 degrees C and 40 degrees C. Subjects at the highest temperatures exhaled about 30 times more chloroform than the same subjects at the lowest temperatures. This probably results from a decline in blood flow to the skin at the lower temperatures as the body seeks to conserve heat forcing the chloroform to diffuse over a much greater path length before encountering the blood. These results suggest that pharmacokinetic models need to employ temperature-dependent parameters. Two existing models predict quite different times of about 12 min and 29 min for chloroform flux through the stratum corneum to reach equilibrium. At 40 degrees C, the time for the flux to reach a near steady-state value is 6-9 min. Although uptake and decay processes involve several body compartments, the complicating effect of the stratum corneum lag time made it difficult to fit multiexponential curves to the data; however, a single-compartment model gave a satisfactory fit.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of dermal and respiratory chloroform exposure in humans.

Chloroform is a known contaminant of chlorinated drinking water and of swimming pool water disinfected with chlorine or one of its derivatives. Few data exist regarding the importance of dermal and inhalation exposure routes to the chloroform body burden resulting from domestic and recreational use of chlorinated water. In our experimental study involving 11 male swimmers, we quantified the bod...

متن کامل

Ingestion, inhalation, and dermal exposures to chloroform and trichloroethene from tap water.

Individuals are exposed to volatile compounds present in tap water by ingestion, inhalation, and dermal absorption. Traditional risk assessments for water often only consider ingestion exposure to toxic chemicals, even though showering has been shown to increase the body burden of certain chemicals due to inhalation exposure and dermal absorption. We collected and analyzed time-series samples o...

متن کامل

Systemic uptake and clearance of chloroform by hairless rats following dermal exposure. I. Brief exposure to aqueous solutions.

The systemic uptake of chloroform from dilute aqueous solutions into live hairless rats under conditions simulating dermal environmental exposure was studied. Whole blood was sampled during a 30-min immersion of an animal within water containing a known concentration of chloroform and then for 5.5 h following its removal from the bath. The amount of chloroform systemically absorbed was determin...

متن کامل

Alveolar breath sampling and analysis to assess trihalomethane exposures during competitive swimming training.

Alveolar breath sampling was used to assess trihalomethane (THM) exposures encountered by collegiate swimmers during a typical 2-hr training period in an indoor natatorium. The breath samples were collected at regular intervals before, during, and for 3 hr after a moderately intense training workout. Integrated and grab whole-air samples were collected during the training period to help determi...

متن کامل

An Assessment of the Interindividual Variability of Internal Dosimetry during Multi-Route Exposure to Drinking Water Contaminants

The objective of this study was to evaluate inter-individual variability in absorbed and internal doses after multi-route exposure to drinking water contaminants (DWC) in addition to the corresponding variability in equivalent volumes of ingested water, expressed as liter-equivalents (LEQ). A multi-route PBPK model described previously was used for computing the internal dose metrics in adults,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Environmental Health Perspectives

دوره 106  شماره 

صفحات  -

تاریخ انتشار 1998